
UCRL-ID-126455, Rev. 1 TART97

UCRL-ID-126455, Rev. 1 1 TART97

UCRL-ID-126455, Rev. 1

TART97
A Coupled Neutron-Photon

3-D, Combinatorial Geometry
Monte Carlo Transport Code

by
Dermott E. Cullen

University of California
Lawrence Livermore National Laboratory

P.O. Box 808
L-59

Livermore, CA 94550

tele: 925-423-7359
e. mail: cullen1@llnl.gov

November 22, 1997

Abstract

TART97 is a coupled neutron-photon, 3 Dimensional, combinatorial geometry, time
dependent Monte Carlo transport code. This code can run on any modern computer. It
is a complete system to assist you with input preparation, running Monte Carlo
calculations, and analysis of output results. TART97 is also incredibly FAST; if you have
used similar codes, you will be amazed at how fast this code is compared to other similar
codes. Use of the entire system can save you a great deal of time and energy.

TART97 is distributed on CD. This CD contains on-line documentation for all codes
included in the system, the codes configured to run on a variety of computers, and many
example problems that you can use to familiarize yourself with the system.

TART97 completely supersedes all older versions of TART, and it is strongly
recommended that users only use the most recent version of TART97 and its data
files.

UCRL-ID-126455, Rev. 1 TART97

UCRL-ID-126455, Rev. 1 2 TART97

Acknowledgments

I thank the many users of earlier versions of TART who have supplied extremely
useful feedback to me. Since the release of TART95, in July 1995, and TART96, in
November 1996, the response from users in terms of feedback has been extremely useful
in improving the code. These improvements have been in terms of correcting problems in
the initial release of TART95 and TART96, and in terms of proposing new or improved
options to meet the needs of users, now incorporated in TART97. I highly encourage all
users to supply their feedback to me.

The TART97 System

This report is intended merely as a brief introduction to TART97. In particular no graphics
results are presented in this report. The on-line documentation for the TART97 system
codes, distributed on TART97 CD, has been coordinated to illustrate combined use of the
codes to make your job simpler and your work easier to accomplish, in particular
extensive use of interactive graphics. If you have not used interactive graphics before you
are only making your job harder and your tasks will take longer to accomplish. I Strongly
Recommend that you also read the on-line documentation for TARTCHEK, EPICSHOW
and PLOTTAB, to get a better overall picture of how this entire code system fits together
and can help you. The TART97 on-line documentation is in Microsoft Word 5.1 format
and includes black and white as well as color graphic results. Only when you start using
the codes in combination will you realize that this is a complete system that can really
assist you in your work.

Computer Requirements

TART97 will run of any modern Computer, with at Least 8 Megabytes Memory and 20
Megabytes Disk Space. This puppy can run on virtually any computer; see, the below table
of running times on a variety of computers.

TART97 CD

TART97 is distributed on CD. This CD contains on-line documentation for all codes
included in the system, the codes configured to run on a variety of computers, and many
example problems that you can use to familiarize yourself with the system.

UCRL-ID-126455, Rev. 1 TART97

UCRL-ID-126455, Rev. 1 3 TART97

TART Home Page

I am in the process of establishing a TART home page on the web at,

http://reddog1.llnl.gov

This site will soon contain all of the TART documentation, as well as information and
documentation related to TART and the nuclear and atomic data that it uses. This site will
be periodically updated, with newsletters, etc. If you are a TART user you should
periodically check this site for the latest news.

TART Hot Line

Well, not exactly a hot line, but at least a place to turn to when you need help. If you have
any difficulties setting up TART input, running it, or analyzing output, you can contact me
at,

Telephone: 510-423-7359
E. Mail: cullen1@llnl.gov

Background

TART97 is a coupled neutron-photon, 3 Dimensional, combinatorial geometry, time
dependent Monte Carlo transport code. The original TARTND has been used and
distributed from Lawrence Livermore National Laboratory for many years. TART95,
released in July 1995, was the first version of the code designed to be used on virtually any
computer. TART96 was designed to extend the general utility of the code to more areas
of application, by concentrating on improving the physics used by the code. TART97
further improves the physics, plus it adds new input options, and greatly improved
consistency checking designed to make the code more user friendly and to improve the
reliability of results. TART97 completely supersedes all older versions of TART, and
it is strongly recommended that users only use the most recent version of TART97
and its data files.

UCRL-ID-126455, Rev. 1 TART97

UCRL-ID-126455, Rev. 1 4 TART97

TART95

The objective of TART95 [1] was to develop a code that is as computer independent as
possible. This objective was met by July 1995, when TART95 and its documentation were
distributed for general use. At that time TART95 was operational on large mainframe
computers, such as CRAY, and workstations, such as: SUN, SGI, HP, DEC Alpha,
Meiko, and IBM RISC, as well as IBM-PC. Since that time it has become operational on
additional types of computers, such as PowerMAC and even Laptop computers.

TART95 is written in such simple, computer independent FORTRAN, that it can now be
easily implemented and used on virtually any computer.

TART96

Once the objectives of TART95 were met work began on TART96 [2]. The objective of
TART96 was to extend the general utility of the code to more areas of application, by
concentrating on improving the physics used by the code.

The most important improvements include,

NEW NEUTRON 650 GROUP TREATMENT: for cross sections over the energy
range 10-4 eV up to 1 GeV. Older versions of the code used a 175 group treatment from
1.309 10-3 eV up to 20 MeV, with most of the groups concentrated at higher energy; this
limited accurate use of the code to higher energy applications. In contrast the new 650
group treatment is designed to accurately treat the entire neutron energy range, thereby
allowing the code to be used for a wider range of applications. As yet neutron data is only
generally available up to 20 MeV, but as soon as higher energy data becomes available
TART96 is ready to use it. If you are a fan of the older 175 group treatment, not be
worry: TART96 can use either 175 or 650 groups - the choice is yours.

ENDF/B-VI CROSS SECTIONS: Older versions of the code only used the Livermore
ENDL library, which is primarily designed for use in high energy applications. In contrast
the ENDF/B-VI data is designed for general use at all energies [3]. Therefore using this
data allows the code to be accurately used in a wider range of applications. If you are a
fan of the older ENDL data, not be worry: TART96 can use either ENDL or ENDF/B-VI
- the choice is yours.

IMPROVED THERMAL SCATTERING TREATMENT: The major advantages of
the new thermal scattering treatment include: improved accuracy of sampling, and greatly
improved speed of execution [4].

FURTHER IMPROVEMENTS IN COMPUTER INDEPENDENCE: TART95 was
implemented on a variety of computers, but it required the use of a few routines that
varied from one computer to another. On the basis of user feedback, most of this
remaining computer dependence has now been eliminated, and TART96 is now so

UCRL-ID-126455, Rev. 1 TART97

UCRL-ID-126455, Rev. 1 5 TART97

computer independent that it is almost trivial to implement it on any new type of computer
that comes along.

TART97

Once the objectives of TART96 were met work began on TART97. The objective of
TART97 was to extend the general utility of the code to even more areas of application,
by concentrating on improving the physics, and extending input options used by the code.

The most important improvements include,

NO UPPER LIMITS: on anything you can define by input. Unlike earlier versions of
TART, that had a maximum allowed number of zones, surfaces, etc., TART97 has no
limits at all. If you want to use a million zones, with a different material composition in
each zone, or anything else you can think of, TART97 can handle it.

NO LOWER LIMITS: on anything you can define by input. With earlier versions of
TART, that used fixed maximum limits, there was a lot of overhead when running small
problems. For example, when TART96 started it used 50 megabytes of memory. TART97
starts with about 1 megabyte and expands to need the needs of each problem. Typical
problems only use 3-4 megabytes of memory. I haven’t tried it, but TART97 is now so
compact it will probably run on the new Palm Top computers.

NEW LONG RUN RANDOM NUMBER GENERATOR: The new generator includes
over 2,500 different random number sequences, each sequence a trillion (1012) random
numbers displaced from the preceding sequence. With a modern computer we can
generate a trillion random numbers in about one day, if that's all a code is doing. With
TART97 each random number sequence should take about 10 to 20 days to use a
complete trillion number sequence. Therefore the currently available 2,500 sequences
should keep you busy for years; and if you need more, just ask for them.

MULTIPROCESSING: If you have a large computer with say 256 processors and a
gigabyte of memory, you can do the arithmetic yourself: for a typical 3-4 megabyte
problem, you can run 250 copies of TART97 all at the same time, and use the new utility
code TARTSUM to add all of the results together. This approach is completely computer
independent, and in this example you can compress 250 days of work into a single day
(more than a year of working days into one day). With the new random number generator,
using different random number sequences for each run, you can make over 2,500
statistically independent runs and combine the results. You can do this simply by running
the same problem with different random number sequences, either using multiprocessing,
or any number of single processor computers that you have access to, or a single
processor repeatedly, if you just want to run more histories to improve your results.

NEW INPUT OPTIONS: have been added to extend TART97’s capabilities, as well as
to simplify and make input more user friendly. These options include: cubic and quartic
(e.g., torus) surfaces, new rotation and spatial translation, surface cloning, new

UCRL-ID-126455, Rev. 1 TART97

UCRL-ID-126455, Rev. 1 6 TART97

neutron and photon sources, see, Appendix: Summary of New Conventions and
Options.

IMPROVED INPUT CHECKING: to catch more input errors before the calculation
begins. As described below, this checking is now incorporated in both TART97 and
TARTCHEK. WARNING it is highly recommended that you always use TARTCHEK to
check your input, before actually running TART97.

IMPROVED ANALYTICAL VOLUME CALCULATOR: in many cases the results
that we are interested in are not results per zone, but rather results per unit volume (e.g.
per cc). The improved analytical volume calculator greatly extends TART’s ability to
quickly calculate zone volumes. This will meet the needs of most applications. For
extremely complicated geometric shapes TART97 includes a very fast Monte Carlo
volume estimator. Used in combination, the analytical and Monte Carlo volume
calculators can quickly define the volume of all of your zones, regardless of how
complicated your geometry may be.

MODULAR CODING: TART97 is also very modular, so that portions of the code can
be used in other codes. For example, TART97 and TARTCHEK use exactly the same
input and geometry package; this assures that when you use TARTCHEK to check your
geometry, when you run TART97 it will interpret your geometry in exactly the same
manner. Similarly these packages will soon be incorporated into EPIC: an Electron Photon
Interaction Code.

THE LATEST NEUTRON AND PHOTON DATA: TART97 uses the latest ENDF/B-
VI, Release 4, neutron data [5], and Evaluated Photon Data Library ‘97 (EPDL97),
photon data [6]. As with past versions of TART, if you would prefer to use older data, the
option is yours.

INTERNAL CONSISTENCY CHECKING: No code is perfect, and for any
complicated code, such as TART, that has many possible paths through it, it is virtually
impossible to manually check all possible paths. With TART97’s new internal consistency
checking, it does its own checking every time it is run. For example, every single array in
the code is checked for misuse, in an attempt to find as many errors as possible. This
procedure has already led to accelerated code development and improvements, and will
continue to do so in the future.

GENERAL IMPROVEMENTS: TART97 is based on the older TARTND code, but
required massive changes to the code to make it the modern, computer independent code
that it is today. As such there were bound to be some growing pains with this essentially
new code. Over the last two years, feedback from the many code users has led to general
improvements in the code, both in terms of locating and correcting problem areas, as well
as in adding and improving code options to meet the needs of users.

FULL OPTIMIZATION: One general improvement worth noting, is that based on
communications with a variety of FORTRAN compiler designers, TART97's has been re-
designed to allow it to be compiled at the highest level of optimization on most

UCRL-ID-126455, Rev. 1 TART97

UCRL-ID-126455, Rev. 1 7 TART97

computers, which can greatly reduce running time, without sacrificing accuracy.

TEMPERATURE DEPENDENT NEUTRON DATA: In the past TART has always
used nominally room temperature (300 Kelvin) neutron cross sections. We can now
prepare additional data files at virtually any temperature to meet programmatic needs [5].

PHOTON 801 POINT TREATMENT: Still to be incorporated in future versions of
TART is a new photon 801 point treatment for cross sections over the energy range 10 eV
up to 1 GeV. Older versions of the code used a 176 point treatment from 100 eV up to 30
MeV, with most of the points concentrated at higher energy; this limited accurate use of
the code to higher energy applications. As with the 650 group neutron treatment, this new
treatment of the photon cross sections is designed to accurately treat the entire energy
range, allowing the code to be used for a wider range of applications.

UCRL-ID-126455, Rev. 1 TART97

UCRL-ID-126455, Rev. 1 8 TART97

Running Time

The below table presents results obtained using the TART 68 fast critical assembly
benchmark problems. All 68 fast criticality problems were run on each computer. This
table summarizes timing results for the older TARTND code, that only runs on CRAY
computers, as well as TART96 and TART97 on a variety of computers.
__

Code Computer Running Ratio to
 Time TARTNP
 (Seconds) CRAY-YMP
__

TARTNP CRAY-YMP 5396 1.0 YMP
TARTNP CRAY-J90 7727 1.43 J90
__
TART96 IBM-PC 799[a] 0.15 Pentium 2/266 Mhz
TART96 DEC-Alpha 887 0.16 800 Model 5/300
TART96 IBM-PC 1182[a] 0.22 Pentium Pro/200 Mhz
TART96 HP-735 1932 0.36 735/125 MHz
TART96 IBM-PC LapTop 2791[a] 0.52 LapTop/133 Mhz
TART96 SUN 2861 0.53 E3000/166 Mhz
TART96 CRAY-YMP 4502 0.83 YMP
TART96 IBM-RISC 6404 1.19 RS-6000
TART96 Power-MAC 7660 1.42 7500/100 Mhz
TART96 Meiko 7843 1.45 CS-2/66
TART96 SUN 7956 1.47 Sparc-20
TART96 CRAY-J90 8103 1.50 J90
TART96 SGI 8633 1.60 R4000/100 MHz
__
TART97 DEC-Alpha 712 0.13 800 Model 5/300
TART97 IBM-PC 855[a] 0.16 Pentium 2/266 Mhz
TART97 IBM-PC 1185[a] 0.22 Pentium Pro/200 Mhz
TART97 HP-735 1834 0.34 735/125 MHz
TART97 SUN 2107 0.39 E3000/166 Mhz
TART97 IBM-PC LapTop 2990[a] 0.58 LapTop/133 Mhz
TART97 CRAY-YMP 4262 0.79 YMP
TART97 IBM-RISC 5739 1.06 RS-6000
TART97 Meiko 6225 1.15 CS-2/66
TART97 SUN 6315 1.17 Sparc-20
TART97 Power-MAC 6446 1.21 7500/100 Mhz
TART97 SGI 6953 1.29 R4000/100 MHz
TART97 CRAY-J90 7673 1.42 J90
__
 [a] DEC Visual FORTRAN is now used, since Microsoft abandoned support of its
Powerstation FORTRAN. This is the only computer/compiler combination tested where
TART97 does not run faster than TART96.

When we compare the three codes all run on the same CRAY-YMP, we find that
compared to the older TARTND code, TART96 is about 17 % faster, and TART97 is
about 21 % faster. So that not only has TART97 been extended for more general uses,
these extensions were accomplished with no lose in running time efficiency, i.e., TART97
is actually faster than TART96, except as noted above.

UCRL-ID-126455, Rev. 1 TART97

UCRL-ID-126455, Rev. 1 9 TART97

You should also note the advantage of TART96 and TART97 over the older TARTND in
terms of their ability to be used on virtually any computer. For example, even a Laptop
computer runs TART97 about twice as fast as TARTND on a CRAY-YMP, and on a
basically $ 3,000 IBM-PC Pentium-II, 266 MHz, TART97 runs about six times faster than
TARTND does on a multi-million dollar CRAY-YMP. Consider that since this $ 3,000
computer, has run 68 separate criticality problems in a total of 855 seconds, it means on
average each criticality problem is completed in less than 13 seconds!!! It boggles
the mind.

Why is TART so FAST?

Some users make the mistake of assuming that since TART is so much faster than other
codes that perform the same types of calculations, the results based on other codes must
be better than those based on TART. When you use TART you will find that its results are
just as accurate as those of other codes. So why is TART so fast?

There isn’t any big secret to TART’s speed: it is based on over 30 years of continuous use
and improvement. During this time roughly 80 work years of physicist/programmer time,
and hundreds of work years of user experience, where incorporated into the code that we
have today. To illustrate why TART is so much faster and still as accurate as other codes,
I’ll mention just a few points.

First is the use of multi-group data, including the multi-band method to account for self-
shielding [1, 7], as used by TART, compared to continuous energy cross sections used to
other codes. Results using continuous energy cross sections have to be better, right? This
is only true if you run a calculation for extremely long times so that you accurately sample
ALL of the continuous energy cross sections. This is almost never done, and I know of no
code that explicitly includes an estimate of the uncertainty in its results based on the
enormous variation in continuous energy cross sections. In comparison, TART’s approach
is designed for the real world, and incorporates not only the best nuclear and atomic data,
but also the best nuclear and atomic engineering.

For example, if we look at the U-238 cross sections we see capture cross sections that
vary by roughly four orders of magnitude, and we can see that it is composed of very
narrow resonances with relatively large energy intervals between resonances, i.e., the ratio
of resonance spacing to width is about 100 to 1. This data is VERY DIFFICULT to
sample on a continuous energy basis. Indeed if you try it you will find that in order to
obtain even a fairly accurate estimate of the average cross sections and distance to
collision you would have to sample billions of histories. I don’t know of any code that
uses continuous energy cross sections that actually does this. They simply supply you with
the “best” possible cross sections and assume that this will solve your problems. TART
takes it a step further: not only does TART use the “best” cross sections, but also uses the
“best” nuclear engineering. Again, consider the U-238 cross sections. Anyone who has
taken a course in reactor physics knows that in this case the neutron flux will self-shield
and we know the form of the self-shielding. Therefore we do not need all of the nitty-
gritty details of each and every narrow capture resonance in order to perform an accurate
transport calculation. Think about it: people have been successfully designing nuclear

UCRL-ID-126455, Rev. 1 TART97

UCRL-ID-126455, Rev. 1 10 TART97

reactors for over 50 years, and yet only fairly recently have detailed cross sections become
available. So how did people design their reactors? They did what TART now does:
combine the “best” currently available nuclear data with the “best” nuclear reactor theory.
In the case of TART the use of the multi-band method to account for resonance self-
shielding [1, 7] allows it to use multi-group, rather than continuous energy cross sections,
resulting in rapid convergence of calculations, compared to code that use continuous
energy cross sections and take forever to converge. Most important for users to
understand is that this is done with virtually no lose in accuracy in the TART calculations,
indeed it is fair to say that since for reasonable running times the TART results converge
and those of other codes do not, from the pragmatic viewpoint of obtaining accurate
answers in a reasonable amount of time the TART results are better.

A second example of why TART is so fast is its treatment of geometry. Compared to
other codes TART uses a very strict geometry, which places an additional burden on the
user in terms of input preparation. But the pay off is that the input is easier to check and
correct (using TARTCHEK) to improve reliability, and when the code starts to run it
FLYS!!!

For example, TART insists that the users define every space point to be within a spatial
zone. Other codes do not insist on this, so why does TART? The first reason is that
without insisting on this it is not possible to check the input parameters for errors;
checking is now simple and straightforward using TARTCHEK, and greatly improves the
reliability of the input. Next, when TART runs it greatly accelerates tracking. How can be
few holes in the geometry make such a big difference? Consider a simple problem
involving 1000 spatial zones with each zone bounded by 6 surfaces. When a particle enters
a spatial region that is not defined in the problem, i.e., is a “hole”, the code has to track
(ray trace) to the nearest bounding surface to determine what zone it will next enter. In
this example it has to ray trace to the 6 bounding surfaces of each of the 1,000 spatial
zones, to determine which of these surfaces is closest to the particle in its direction of
travel, i.e., it has to ray trace to 6,000 surfaces. In contrast, with TART where a particle is
always within a defined zone, in this example, we are inside one of the zones and we have
to track (ray trace) to the nearest boundary of the zone. This only involving tracking to
each of the bounding surfaces of this one zone, i.e., ray trace to 6, rather than 6,000
surfaces. No wonder TART geometry is so much faster to track through. How much of an
effect does this really make? TART and TARTCHEK use exactly the same geometry
package. In the original method used by TARTCHEK to display 3-D objects
,TARTCHEK used a general ray tracing technique that did not take advantage of TART
geometry. When TARTCHEK was updated to take advantage of TART geometry the ray
tracing to display 3-D objects ran up to 200 TIMES FASTER - not 200 % - 200
TIMES!!! Pictures that took hours or all night to produce could suddenly be done in
minutes or seconds. The difference was dramatic.

I should also mention the unresolved resonance region, where by definition we do not
know the cross sections on a continuous energy basis, but it can be accurately treated by
the multi-band method used by TART97. Ask yourself: what do code that claim to use
continuous energy cross sections do in the unresolved resonance region?

UCRL-ID-126455, Rev. 1 TART97

UCRL-ID-126455, Rev. 1 11 TART97

These are but a few examples of why TART runs so much faster than other codes, with
essentially no lose in accuracy. Try it for yourself and see what you think.

UCRL-ID-126455, Rev. 1 TART97

UCRL-ID-126455, Rev. 1 12 TART97

What Code should you be using?

TART97 completely supersedes all older versions of TART, and it is strongly
recommended that users only use the most recent version of TART97 and its data
files. How do you know if you have the most recent version of the code and its data files?
As soon as the code starts to run it identifies the version you are running and the dates of
its data files. Below is the beginning of the code output report. Note, the code version:
TART 97-5, Nov. '97, and the date of all the data files: 09/19/97. If you are using an
older version of the code or its data files, it is strongly recommended that you obtain the
most up-to-date code and data; see, the below section on Availability.

 TART97 - Neutron-Photon Monte Carlo Transport (TART 97-5, Nov. '97)
__

 I/O Files Opened for Entire Run
==
 Definition Filename Unit Date
==
 TART Input Parameters....................TART.IN 2
 TART Output Listing......................TART.OUT 3
 TART Input Scratch File..................TART0IN0.TMP 33
 Neutron Interaction Data File............TARTND 7 09/19/97
 Photon Interaction Data File.............GAMDAT 8 09/19/97
 Neutron Induced Photon Production File...TARTPPD 9 09/19/97
 Multi-Band Parameter File................NEWCROSS 10 09/19/97

 Neutron Interaction Data. 566 Groups 1.0000D-10 to 2.0000D+01 MeV
 Photon Interaction Data.. 176 Points 1.0000D-04 to 3.0000D+01 MeV

Utility Codes

In addition to the TART97 code you should also be aware of the utility codes distributed
with TART97; of particular note is TARTCHEK. One of the most difficult tasks that you
will face in using any 3-D combinatorial Monte Carlo code is to correctly define input
parameters for the code, particularly to correctly define geometry. This is what
TARTCHEK is designed to help you with. It is an interactive graphics code that will
allow you to view and check your input parameters before you run TART97. Even we so
called "experts" on TART97 find that using TARTCHEK can greatly reduce the amount
of time that we have to spend on input preparation, and even what is more important,
greatly improve the reliability of our input parameters.

TARTCHEK can also help you analyze results by overlaying flux or energy deposition on
your geometry. Instead of spending days or weeks wading your way through a thick
output listing trying to understand the results, using TARTCHEK a few minutes after
you finish a TART97 calculation you can “see” the results overlaid on your geometry. Not
only will this save you time, it can improve your overall understanding of the results, by
showing you the “big picture” of how flux, deposition. etc., in each zone is related to that

UCRL-ID-126455, Rev. 1 TART97

UCRL-ID-126455, Rev. 1 13 TART97

in all other zones. This is something that is very difficult to “see” regardless of how long
you stare at an output listing. If you are not using TARTCHEK you are only making
your job more difficult, and you don't know what you are missing.

You should also be away of the new utility code TARTSUM, which will add together
results from any number of TART problems, and produce a combined output file in
EXACTLY the same format as any other single TART problem output file. Our
computers are getting faster and faster, but we are running into the speed of light problem,
where we can only get so much work done using a single processor. TART97’s approach
to multiprocessing allows us to avoid this limit, in the sense that we can now compress the
work that used to take many days, into a single day. This is true on either multiprocessing
computers or a group of single processors computers. Just run your problems on ANY
computer(s), using as many processors as you have access to, and TARTSUM will
combine the results for you. Note, since the combined output file produced by
TARTSUM is in EXACTLY the same format as any other single TART problem output
file, if you are one of the many TART users who have utility codes to further process
TART output results - not to worry - your utility codes will work on the combined file,
exactly the same way they work on the results of a single TART run.

Documentation

Although TART95, was superseded by TART96, that in turn has now been superseded by
TART97, the most complete documentation for TART97 is still,

TART95: A Coupled Neutron-Photon Monte Carlo Transport Code, Lawrence
Livermore National Laboratory, UCRL-MA-121319, July 4, 1995, by D. E. Cullen,
A.L. Edwards and E.F. Plechaty

At Livermore, for copies of this report, contact me. Outside of Livermore, contact your
local computer code center; see the below section on Availability.

Additional Documentation

The TART97 system also includes documentation for TARTCHEK, EPICSHOW,
PLOTTAB, EDITOR and the utility codes. To fully appreciate the features of the overall
system you are encouraged to also read the documentation for these codes to see
examples of how the codes can be used in combination.

TART95 documentation is now available on-line on the Web at,

http://www-phys.llnl.gov/N_Div/TART

All of the TART97 documentation will soon be available at the new TART Website.

UCRL-ID-126455, Rev. 1 TART97

UCRL-ID-126455, Rev. 1 14 TART97

Availability

At Livermore, for copies of the system, contact me. Outside of Livermore, contact your
local computer code center - within the United States, the Radiation Safety Information
Computational Center (RSICC), Oak Ridge National Laboratory (e. mail: jib@ornl.gov),
outside of the United States, the OECD Nuclear Energy Agency/Data Bank (NEA/DB),
Paris, France (e. mail: sartori@nea.fr).

Code Installation

The code is distributed with detailed instructions concerning installation and testing of the
code. These instructions are periodically updated for distribution with the code, to insure
that the instructions are as up-to-date as possible, and exactly correspond to the version of
the code that you will be implementing and using. As such, installation instructions will
not be included here.

References

[1] "TART95: A Coupled Neutron-Photon Monte Carlo Transport Code," Lawrence
Livermore National Laboratory, UCRL-MA-121319, July 1995, by D.E. Cullen, A.L.

[2] “TART96: A Coupled Neutron-Photon 3-D, Combinatorial Geometry Monte Carlo
Transport Code," Lawrence Livermore National Laboratory, UCRL-ID-126455,
November, 1996, by D.E. Cullen.

[3] "The 1996 ENDF/B Pre-Processing Codes," The International Atomic Energy
Agency, Vienna, Austria, IAEA-NDS-39, Rev. 9, November 1996, by D.E. Cullen.

[4] "THERMAL: A Routine Designed to Calculate Neutron Thermal Scattering," Lawrence
Livermore National Laboratory, UCRL-ID-120560-Rev-1, Sept. 1995, by D.E. Cullen.

[5] “A Temperature Dependent ENDF/B-VI, Release 4 Cross Section Library,”
Lawrence Livermore National Laboratory, UCRL-ID-127776, by D.E. Cullen.

[6] “EPDL97: the Evaluated Photon Data Library, '97 Version," Lawrence Livermore
National Laboratory, UCRL--50400, Vol. 6, Rev. 5, by D.E. Cullen.

[7] “Nuclear Cross Section Preparation”, by D.E. Cullen, Chapter 1, Volume I,
“Handbook of Nuclear Reactions Calculations," editor Yigal Ronon, CRC Press, Boca
Raton, Florida (1986).

UCRL-ID-126455, Rev. 1 TART97

UCRL-ID-126455, Rev. 1 15 TART97

Appendix: Summary of New Conventions and Options

To help explain and illustrate the use of the new options the TART97 CD distribution
includes example input decks. I encourage you to use TARTCHEK to look at these
examples - particularly using 3-D views, so you can see them better.

Biggest Changes for TART97 vs. TART96

There is no limit on input parameters. You can have any number of surfaces, zones,
bounding surfaces, materials, sources, e.g., you can have a million zones, with a different
material in every zone, if you want to do burnup calculations.

This also means there is no lower limit. Earlier versions of TART were dimensioned to
handle large problems. Because of this the code would start at about 50 MB and then
decrease in size. This caused startup problems on smaller computers. TART97 starts at
about 1 MB and increases to meet the needs of your specific problem; most problems will
only use 3-4 MB.

Any input line can now be continued onto any number of continuation lines. With earlier
versions of TART some input, particularly complicated sources, could not be continued
from one line to another, which made input preparation difficult. You will find that being
able to continue any input line, it is much easier to prepare input. Some of the following
new options, such as cloning, rotation and spatial translation, were recommended by
TART users, and are also designed to simplify preparation of TART input. If you have
ideas to even further simplify input preparation, I’d love to hear them.

The new input Options

Cubic

xcubic nb x0 y0 z0 d c b a
ycubic nb x0 y0 z0 d c b a
zcubic nb x0 y0 z0 d c b a

a cubic, rotationally symmetric about an axis - the equations are,

xcubic: (y-y0)2 + (z-z0)2 = R(x)2

 = a(x-x0)3 + b(x-x0)2 + c(x-x0) + d
ycubic: (x-x0)2 + (z-z0)2 = R(y)2

 = a(y-y0)3 + b(y-y0)2 + c(y-y0) + d
zcubic: (x-x0)2 + (y-y0)2 = R(z)2

 = a(z-z0)3 + b(z-z0)2 + c(z-z0) + d

nb - Surface Number

UCRL-ID-126455, Rev. 1 TART97

UCRL-ID-126455, Rev. 1 16 TART97

x0, y0, z0 - Center coordinates
d, c, b, a - Coordinates of the cubic

The radius along one axis is represented as a cubic. By defining zones using a cubic and
planes perpendicular to the axis of the cubic, you can reproduce almost any surface, using
different cubic parameters to apply along different intervals of the axis; exactly as we think
in terms of performing cubic spline fits.

You can reproduce almost any surface depending on a, b, c and d - spheres, ellipses,
cylinders, cones, parabola, hyperbola, plus more complicated shapes.

WARNING it is R2, NOT R, that is represented by a cubic.

Example problem: NEWCUBIC.IN

Torus

xtorus nb x0 y0 z0 a b c
ytorus nb x0 y0 z0 a b c
ztorus nb x0 y0 z0 a b c

a torus aligned with an axis - the equations are,

xtorus: [(x-x0)/a]2 + [(r-c)/b]2 = 1
 r 2 = (y-y0)2+(z-z0)2

ytorus: [(y-y0)/a]2 + [(r-c)/b]2 = 1
 r 2 = (x-x0)2+(z-z0)2

ztorus: [(z-z0)/a]2 + [(r-c)/b]2 = 1
 r 2 = (x-x0)2+(y-y0)2

nb - Surface Number
x0, y0, z0 - Center coordinates
a, b, c - Coordinates of the torus

If a =b, it is a circular torus, otherwise it is an elliptical torus.

Example problem: NEWTORUS.IN

Rotation about the X, Y or Z axis

xrotate ang is1 thru is2
xrotate ang is1 is2 is3......
yrotate ang is1 thru is2
yrotate ang is1 is2 is3......
zrotate ang is1 thru is2

UCRL-ID-126455, Rev. 1 TART97

UCRL-ID-126455, Rev. 1 17 TART97

zrotate ang is1 is2 is3......

A rotation of surface(s) about an axis by a clockwise angle ang (degrees) looking up the
axis. Rotation is about the ORIGIN - not the center of the surface. Note, this differs from
surfp and srotate input, which can only be used to rotate surfr input about the center of
the surface.

ang - angle of rotation in degrees
is1 thru is2 - rotate surface numbers is1 thru is2
is1 is2 is3... - rotate the listed surface numbers

Surfaces can be rotated one or more times, and the rotation is cumulative and order
dependent.

Any linear or quadratic surface may be rotated. Cubic and torus MAY NOT be rotated (at
least yet).

WARNING - these options are executed immediately when they are read from a TART
input deck. Therefore all surfaces to be rotated MUST be defined before they can be
rotated, and the order of rotations is important.

WARNING - for TARTCHEK users, the lower, left hand plot, is looking at the front of
your geometry in the (z,x) plane, looking UP THE Y AXIS. The upper, left hand plot, is
looking down at the top of your geometry in the (z,y) plane, looking DOWN THE X
AXIS. The lower, right hand plot, is looking at the right hand size of your geometry in the
(y,x) plane, looking DOWN THE Z AXIS. As a result, a clockwise rotation about the y
axis will appear clockwise in the lower, left hand plot. However, a clockwise rotation
about the x axis will appear COUNTERCLOCKWISE in the upper, left hand plot, and a
clockwise rotation about the z axis will appear COUNTERCLOCKWISE in the lower,
right hand plot. This isn't an error - it is merely a result of your perspective when viewing
TARTCHEK displays.

Example problems: NEWHEX.IN, NEWROT.IN (1 rotation) and NEWROT2.IN (2
rotations)

Translation of Spatial Coordinates

addxyz xadd yadd zadd is1 thru is2
addxyz xadd yadd zadd is1 is2 is3...............

Add (x,y,z) to the current center of surfaces.

xadd, yadd, zadd - add to the current (x0, y0, z0) center coordinates of surfaces
is1 thru is2 - add to surface numbers is1 thru is2
is1 is2 is3... - add to the listed surface numbers

Any surface may be translated, any number of times - and the results are cumulative.

UCRL-ID-126455, Rev. 1 TART97

UCRL-ID-126455, Rev. 1 18 TART97

This can be used to translate an entire object or objects to a new location, by translating all
bounding surfaces by the same amount. It also simplifies input by allowing you to ignore
the final position of a collection of surfaces, and input them as if they are at the origin -
then later "add" their final center coordinates.

WARNING - these options are executed immediately when they are read from a TART
input deck. Therefore all surfaces to be spatially translated MUST be defined before they
can be spatially translated.

Try: Adding this to any of the example input

Cloning (Duplicating) Surfaces

clones ns is1 thru is2
clones ns is1 is2 is3.....

Clone (copy) a surface any number of times. Surface ns is copied to define surfaces is1
thru is2, or is1 is2 is3.....

ns - surface number to clone (MUST be defined)
is1 thru is2 - make surface numbers is1 thru is2 identical to surface ns
is1 is2 is3.. - make the list of surface numbers identical to surface ns

Limitations: surface number ns MUST be defined BEFORE it can be cloned (copied). The
surface numbers is1 thru is2 or is1 is2 is3... MUST NOT be defined.

Any surface may be cloned, any number of times.

This option can be used to minimize input preparation when you have a number of
identical surfaces that will finally be located at different locations. You can input a surface
once, clone it, and then later translate and/or rotate the clones to their final locations.

WARNING - these options are executed immediately when they are read from a TART
input deck. Therefore the surface to be cloned (ns) MUST be defined before it can be
cloned.

Example Problems: NEWHEX.IN, NEWROT.IN and NEWROT2.IN

Reduced, Reflecting Geometry

xabove x0
yabove y0
zabove z0

xbelow x0
ybelow y0

UCRL-ID-126455, Rev. 1 TART97

UCRL-ID-126455, Rev. 1 19 TART97

zbelow z0

For users who only want to model 1/2, 1/4 or 1/8 of symmetric geometry, these options
can be used to: 1) define additional x, y and/or z planes, 2) add these planes as boundaries
of ALL zones, 3) add additional, reflecting zones on the "other" side of the planes.

x0, y0, z0 - a plane perpendicular to the axis is defined at one of these coordinates.

"above" means transport above this plane - the reflecting zone is below this plane.

"below" means transport below this plane - the reflecting zone is above this plane.

With earlier versions of TART in order to accomplish this you had to include the surface
of the reflecting zone explicitly as a bounding surface of every zone. With this new input
option this is automatically done for you.

For TARTCHEK users, to see the effect of inserting these planes, use the above/below
options on the "Surface" page.

WARNING: These planes are inserted into the geometry AFTER ALL input has been
read - they CANNOT be rotated or transformed in ANY way. It is suggested that as a
reminder to yourself, you always locate these options at the end of your TART input deck
after all other geometric input parameters have been defined.

Try: Adding this to any of the example input

UCRL-ID-126455, Rev. 1 TART97

UCRL-ID-126455, Rev. 1 20 TART97

New Sources

These sources can be used to sample sources from irregularly shaped zones. Unlike the
other sources, these sources reject a sample if it is not inside a zone number in the range
nz1 through nz2. These three new sources are for a sphere, cylinder, or rectangular box.
For sampling select whichever of these shapes corresponds “best” to the shape of your
actual zone numbers nz1 through nz2.

RESTRICTIONS

1) nz1 MUST be less than or equal to nz2.
2) If none of 10,000 consecutive samples from the defined volume is within zone numbers
nz1 through nz2, it is assumed you made a mistake and the code will terminate. This
prevents the code from going into an infinite loop of sampling and rejecting forever.

source19 nz1 thru nz2 ri ro [x0 y0 z0]
s19 nz1 thru nz2 ri ro [x0 y0 z0]
s19g nz1 thru nz2 ri ro [x0 y0 z0]

A spherical shell source of inner radius ri, and outer radius ro, centered at x0, y0, z0. Use
source19 or s19 for neutrons, and s19g for photons.

nz1 - lowest zone number to sample from
nz2 - highest zone number to sample from
ri - inner radius of sphere
ro - outer radius of sphere
x0, y0, z0 - center of the sphere (optional, defaults to 0, 0, 0)

source20 nz1 thru nz2 z1 z2 ri r0 [x0 y0]
s20 nz1 thru nz2 z1 z2 ri r0 [x0 y0]
s20g nz1 thru nz2 z1 z2 ri r0 [x0 y0]

A cylindrical shell source, aligned with the z axis, extending along the z axis from z1 to z2,
of inner radius ri, and outer radius ro, centered at x0, y0. Use source20 or s20 for
neutrons, and s20g for photons.

nz1 - lowest zone number to sample from
nz2 - highest zone number to sample from
z1 - lower z limit of cylinder
z2 - upper z limit of cylinder
ri - inner radius of cylinder
ro - outer radius of cylinder
x0, y0 - center of the sphere (optional, defaults to 0, 0)

Note, for a cylinder aligned with an axis other than the z axis, use sentl 30 (neutrons) or
sentl 43 (photons) to rotate the coordinates.

UCRL-ID-126455, Rev. 1 TART97

UCRL-ID-126455, Rev. 1 21 TART97

source21 nz1 thru nz2 x1 x2 y1 y2 z1 z2
s21 nz1 thru nz2 x1 x2 y1 y2 z1 z2
s21g nz1 thru nz2 x1 x2 y1 y2 z1 z2

A rectangular box in (x,y,z), extending in x from x1 to x2, in y from y1 to y2, and in z
from z1 to z2. Use source21 or s21 for neutrons, and s21g for photons.

nz1 - lowest zone number to sample from
nz2 - highest zone number to sample from
x1 - lower x limit of box
x2 - upper x limit of box
y1 - lower y limit of box
y2 - upper y limit of box
z1 - lower z limit of box
z2 - upper z limit of box

There are no examples of these sources included here.

Changes in sentinels

Do not limit the energy range of transport and scoring

sentl 8 and 9

These sentinels define the minimum neutron (sentl 8) and photon (sentl 9) energy below
which particles cannot transport.

DO NOT use these, unless you really want to limit the minimum energy of neutrons and
photons. TART will now use the minimum energy of the data read from the data files -
which for neutrons differs for 175 and 650 groups.

sentl 13 and 14

These sentinels define the minimum neutron (sentl 13) and photon (sentl 14) energy below
which particles cannot tally (contribute to output results).

Similar to sentl 8 and 9 above - DO NOT use these, unless you really want to limit the
minimum editing energy of neutrons and photons.

sentl 15 and 16

These sentinels define the maximum neutron (sentl 13) and photon (sentl 14) energy above
which particles cannot tally (contribute to output results).

Similar to sentl 8 and 9 above - DO NOT use these, unless you really want to limit the
maximum editing energy of neutrons and photons. Note, soon TART will be extended to

UCRL-ID-126455, Rev. 1 TART97

UCRL-ID-126455, Rev. 1 22 TART97

higher energies, so get used to not using these options now.

New random number sequence selection

sentl 12

The code now has 2,510 sequences, one trillion (1012) samples apart. Input 0 (the
default) to 2509 will use the selected sequence. Any other input is a fatal ERROR.

WARNING - this replaces the earlier definition of this sentinel, where the random number
seed was entered; seen. TART95 documentation.

Highly Recommended Options

For compatibility with earlier versions of TART, by default the following options are
turned off, unless the user specifies by input that they be turned on. It is Highly
Recommended that you turn on ALL of the following options.

sentl 20

For neutron problems turn on resonance self-shielding. This can make problems run 20 to
30 % longer, but without accounting for self-shielding the results can be completely
unreliable.

sentl 25

For photon problems turn on fluorescence. If no photons get down to low energies, this
will have no effect on running time. However, if they do, this option is REQUIRED to
obtain reliable answers.

sentl 39

For neutron problems turn on thermal scattering. If no neutrons get down to thermal
energies, this will have no effect on running time. However, if they do, this option is
REQUIRED to obtain reliable answers.

